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The modern theory of seepage [ infiltration ] is based on the concept of’
a porous medium consisting of impermeable grains separated by pore
spaces. Comparison of the results of theoretical and laboratory invest-
" ' igations of non-steady-state flow of liquids with data for strats under

) natural conditions leads to the coaclusion that current concepts of &
porous medium are inadequate. In all natural strata, the development of
some degree of fissuring is a characteristic feature. The description of

359

§§ non-steady-state flow of liquids in fissured strata by means of the

EN usual equations of infiltration theory can lead, in some cases, to con-

= g flicting conclusions of gualitative nmature,

§§ At first glaoce, it appears that non-steady-state seepage in fissured
gé rocks can be studied by assuming s system of fissures, which are regular
;% to some extent, in the stratum. Apparently, for studying seepage in

& fissured rocks, this method is not promising. Even if it were possible

= to overcome the enormous mathematical difficulties involved in solving

2 problems dof non-steady-state flow ip strats with a system of fissures of
= a sufficiently general type, it is not'possible to determine the con-

E§ " figuration of this system with any degree of reliability. Information ob-
& tained in the analysis of cores -~ specimens of the rock cbtained by drill-

ing from the surface -~ gives very incomplete data on the fissure systex.
The position is to some extent similar to that which occurs in investigat-
inog the flow of & liquid {n an ordinary porous medium -~ even if it were
possible to overcome all the difficulties involved in the integration of
the equations of motion of a viscous liquid in the pore spaces, the
metbod would not be suitable for investigating seepage, aince thas pore
configuration remains unknown. Various models of a porous medium, which
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Seepage of homogeneous liquide in fissured rocks 1287

are based on one or another type of arrangement of the aystem of pores
and grains and on the study of the motion of the liquid in such systems
(ideal soil, fictitious soil, etc. [1 ]), proved suitable only for the
qualitative investigation of secpngo phenomena. Scepape theory has
followed tho trend which is charnctoristic of tho mochanics of continuous
mcdia generally, namely, tho introduction of meun characteristics of tho
media and flow (porosity, permeability, pressure, secpage velocity, etc.)
snd the formulation of basic laws in terms of these wean characteristics.

Such an approach, applied irrespective of whether or not the systenm
of fissures is regular in the natural stratum, also proved most advan-
tageous in investigating seepage in fissured rocks.

In this paper, the basic concepts of the motion of liquids in fissured
rocks are presented. Mean-characteristics are introduced, whereby the
averaging 1s carried out on a scale which is large compared to the
dimensions of the individual blocks. The difference between the preseat
scheme and the more usual scheme of seepage in a porous medium consists
in the introduction at each point in space of two liquid pressvres -
1iquid pressure in the pores and pressure of the liquid in the fissures
a, and in taking into consideration the transfer of liquid between the
fissures and the pores. Under certain assumptions, an expression is ob-
taiped for the intensity of this transfer. The basic equation of the
seepage 0f & liquid in a fissured rock and the same general equations of
the seepage of liquid in a porous medium with s double porosity are de-

.rived. These equations will obviously contain, as s particular case, the

equations -for the seepage of a liquid in an ordinary porous medium; in
the paper an evaluation is made which indicates for which cases the latter

‘equations are valid and when the more accurate expressions given in this
‘paper have to be used. The formulation of the basic boundary-value prob-

lems for seepage equations in fissured rocks is considered. Some
characteristic features of non-steady-state seepage in fissured rocks are
discussed, particularly the possibility of the occurrence, under certain
conditions, of a pressure jump [discontinuity ] within the system and at
the boundaries, similar to the "infiltration gap* in non-pressure seep-
age [2]. conditions at Jumps are derived, and the features pertaining

to the formulation of boundary-value problems in the presence of jumps
are pointed out, Solutions are given of certain apecific problems of non-
steady-state seepage in fissured rocks.

1. Basic physical concepts. A fissured rock consists of pores
and permeable blocks, generally speaking blocks separated from each other
by a system of fissures (Fig. 1). The dimensions of the blocks will vary
for the various rocks within wide limits, depending on the extent to
which fissures are developed in the rock. The widths of the fissures are
considerably greater than the characteristic dimensions of the pores, so
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1288 C.I. Barenblats, Iu‘.P. Zheltoy and I.N. Kochina

that the permeability of the fissure system considerably excecds the
permeability of the system of pores in
the individual blocks. At the same time,
it is a characteristic feature of
fissured rocks that the fissures occupy
s much smaller volume than the pores,
so that the coefficient of fissuring of
the rock s, ~ the ratio of the volume
of the cavity space occupied by the
fissures to the total volume of the
tock = is considerably smaller than the
porosity of the individual blocks a,.
Much factual data on fissured rocks has
been published in [3-9 ]; the paper by Pig. 1.

Pirson [4 ] is of particular interest, since it gives a qualitative de-
scription of the structure of a porous medium with double porosity, which
is close to that considered in this paper.

If the system of fissures is sufficiently well developed, the motion
of the liquid in fissured rocks can be investigated by the following
method. Unlike the classical seepage theory, for each point in space, not
one liquid pressure but two, p, and p, are introduced. The pressure p,
represents the average pressure of the liquid in the fissures in the
neighborhood of the given point, while the pressure p, is the average
pressure of the liquid in the pores in the neighborhood of the given
point. For obtaining reliable averages, the scale of averaging should
include a sufficiently large number of blocks. Therefore, it is neces-
sary to take into consideration that any.infinitely small volume includes
" not only a larger number of pores, as is assumed in the classical theory
of seepage, but also that it contains a large number of blocks. This con-
dition permits the use of the method of analysis of infinitesimals in
_investigating fissured rocks.

In a similar manner, two velocities of seepage of the liquid can be
defined at each point in space: V, and V,. Vector ¥, of the seepage velo-
city of the liquid along the fissures is determined as follows: the pro-
jection of this vector in some particular direction is equal to the flow
of the liquid through the cross-section of the fissures of a small zone
passing through the given point in a direction perpendicular to the given
direction, divided by the density of the liquid and the total area of
this zone. In the same way, the projection of vector V,, the seepage
velocity of the liquid through the pores in a given direction, will equal
the flow of the liquid through the cross-section-of the blocks of the
small zone mentioned, also divided by the density of the liquid and the
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Seepage of homogeneons liquids in fissured rocks 1289

total area of the zone.

It is a characteristic of fissured rocks that the flow of the liquid
proceeds essentially along the fissures, so that the flow velocity of
the liquid through the blocks is negligibly small as compared to seepage
of liquid along the fissures. '

If the boundary between the fissures and the blocks is imagined im-
permeable, the fissured rock can be considered as being a coarse-grained
porous medium in which the fissures play the role of pores and the blocks
play the role of grains. If, furthermore, the fissures are sufficiently
narrow and the velocity of the liquid is sufficiently small, the motion
of the liquid along the fissures will be inertialess and Darcy’s Law is
fulfilled:

k
V1=—F‘g'radp1 (1.1)

where k, is the permeability of the system of fissures and 4 is the vis-
cosity of the liquid. Application of Darcy’'s Law to seepage along the
system of fissures is not of principal importance; if desired, inertia
of the motion can be taken into account, using thereby a more complicated
nonlinear law.

A characteristic feature of the non-steady-state motion of a liquid
in fissured rocks is the transfer of liquid between the blocks and the
fissures. Therefore, in investigating the seepage of liquids in fissured
rocks it is necessary, in contrast to the classical theory of seepage,
to take into consideration the outflow of liquid from the *grains* -
blocks into the "pores® — of the fissures.

The process of transfer of liquid from the pores and the blocks takes,
place essentially under a sufficiently smooth change of pressure, and,
therefore, it can be assumed that this pressure is quasi-stationary, i.e.
it is independent of time explicitly. It is obvious in such a case that
during motion of a homogeneous liquid in the fissures of the rock, the
volume of the liquid v, which flows from the blocks into the fissures
per unit of time and unit of volume of the rock, depends on the follow-
ing: (1) viscosity of the liquid u; (2) pressure drop between the pores
and the fissures p,- p;; and (3) on certain characteristics of the rock,
vhich can only be geometrical ones, i.e. they may have the dimension of
length, area, -volume, etc., or even be dimensionless. On the basis of
dimensional analysis [10 ], we obtain for v an expression of the type

== (Ps—py) S (12)

where a is some new dimensionless characteristic of the fissured rock.
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1280 G.I, Barenblatt, Iu.P. Zheltov and I.N. Kochina

Thus, for the mass g of the liquid which flows from the pores into the
fissures per unit of time, per unit of rock volume, the following ecua-
tion is valid:

7= (ps—p)) (1.,

. where p is the density of the liquid.

It should be pointed out that in a somewhat different form relation
(1.3) was epplied for the integral estimate of the {low along the stratu:

as a whole [11 ],

2. Equation of motion of a uniform liquid in fissured
rocks. In accordance with what has been said above, the law of consery-
ation of mass of liquid in the presence of fissures can be written as

follows:

—
o

am‘p +divpV, —g=0

: In view of the smallness of the volume of the fissures, the first
term, which expresses the change in mass of the liquid due to compres-
sion in the fissures and changes in the volume of the fissures in some
element of the rock, is small as compared to the second term, which ex-
presses changes in the mass of the liquid caused by the inflow of the
liquid along the fissures through the boundary of this element. There-
fore, relation (2.1) can be disregarded. Inserting Equation (1.1)
(Darcy's Law) into Equation (2.1), taking into consideration the fact
that the liquid is slightly compressible so that

p=po-+ Pdp . (2.2

(p, is the density of the liquid at some standard pressure, for instarce,
the initial pressure in the stratum, 8 is the coefficient of compress-
ibility of the liquid, §p is the change in the pressure relative to the
standard pressure), assuming that the medium is homogeneous and neglect-
.ing the small higher-order terms, we obtain

kAP, + “(P:- p)=0 (A 1s Laplace operator) (2.5

Further, the equations of conservation of wass of the lxquxd which is
present in the pores can be written thus®:

\

¢ Strictly apeaking, in Equation (2.4), s, will not represent the
porosity of the blocks but the ratio of the volume of the pores to
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Seepage of homogenaous liquids in fissured rocks 1291
omip :
-—a—‘— +dlv pv’+ q= 0 (2.4)

so that the quantity of liquid which flows into the fissures equals the
quantity of the liquid which flows out of the blocks.

In view of the low permeability of the blocks, the second term of
Equation (2.4), which expresses changes in the mass of the liquid within
the pores in some element of the rock, due to the inflow of liquid along
the pores through the boundaries of the element, can be disregarded as
compared to the first term which represents changes in the mass of the
liquid in the pores due to its expansion, and also to changes in the
volume of the pores. Therefore, Equation (2.4) can be re-written as

2;:_" g=0 | (2.5)
Furthermore, the porosity of the blocks m, in the case of a constant
pressure of the upper strata of the rocks on the roof of the stratum de-
pends, generally speaking, on the pressure of the liquid in the fissures
P, and the pressure of the liquid in the pores p,. However, the volume of
the fissures in the rock is comsiderably smaller than the volume of the
pores. It can be assumed that, in contrast to the liquid located in the

pores, the liquid located in the fissures does not participate in support-

ing the upper strata of the rock formations. Therefore, the influence of
the pressure of the liquid in the fissures p, on the porosity of the
blocks can be disregarded as compared to the influence of the pressures
of the liquid in the pores p,, and it can be assumed that

dm, = Badps (2.6)

where B_, is the coefficient of compressibility of the blocks. Taking
into consideration, also, relations (1.3) and (2.2) and neglecting small
terms of higher order, we obtain

(Bes + moB) 22+ 3 (pa— pi) = 0 @.7)

where m, is the magnitude of the porosity of the blocks at standard pres-
sure. Equations (2.3) and (2.7) describe the motion of the liquid in

the entire volume of the rock, including the volume of tbe fissures.
However, in view of the small relative volume of the fissures compared
to the relative volume of the pores, =, can be considered as repre-
senting the porosity of the individual blocks.
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1292 G.Y. Barenblatt, Iu.P. Zheltov end I.N. Koching

fissured rocks. Eliminating from these equations p,, we obtain for the
pressure of the liquid in the fissures p, the equation

ap AP . ky _h
o1 — N =*An (x- B3y +r4B)’ =3 ) (=%

The coefficient x represents the coefficient of piezo-conductivity of
the fissured rock; it is interesting that this does not correspond to
the permeability of the system of fissures &, but to the porosity and
compressibility of the blocks. The coefficient n represents a new
specific characteristic of fissured rocks. If n tends to zero, it cor-
responds to a reduction of the block dimensions and an increase in the
degree of fissuring, and Equation (2.8) will obviously tend to coincide
with the ordinary equation for seepage of a liquid under elastic condi-
tions.

An approximate estimate of the possible magnitudes of the coef{icic:n:
n will be made. The dimensionless coefficient a, characterizing the in-

‘tensity of the liquid transfer between the blocks and fissures, depends

on the permeability of the blocks k, and the degree of fissuring of the
rock, as a measure of which it is obvious to take the specific surface
of the fissures o, i.e. the surface of the fissures per unit of volure

of the rock. The quantity o has the dimension of the reciprocal of lengii.
On the basis of dimensional analysis we obtain

g ~ kgﬁz (2. S‘)

From this and Equation (2.8) we obtain

ky k)
T~ TR

" where 1 is the average dimension of a single block (the specific surface

of the fissures is inversely proportional to the average dimension of a
single block). Evaluations show that for various rocks the parameter 7
will assume values within wide limits — from a few cm® to values of the
order of 1010 em?,

Determination of the parameter n should be carried out by means of

"data for the steady-state flow of liquids in fissured rocks. Thus, where

natural strata are involved, determination of this parameter should ue
carried out only on the basis of investigations of the behavior of tic
stratum under non-steady-state conditions and not on the basis of tests
carried out on rock specimens brought to the surface.. '

* 3. Equations of motion of s homogeneous liquid in a medium with doudle
porosity. The system of equations (2.3), (2.7) represents a particular

-



.. LTI ] .
T

o]
v

o e
ot

IO

]

R RE Ry e
[14

-

EONd- B3,
w0

v mma e

L et AR, SANGS b am b+ —ha)  trw

PO

e

e L S L B VAL ANAS et o A gt .

Seepage of homogeneous liquids in fissured rocks 1293

case of the system of equations of motioh of a homogeneous liquid in a
pedium with double porosity. In some cases the latter equations may be
of interest and, therefore, we will deal briefly with their derivation.

The motion of a uniform liquid in a ®"double® porous medium will be
considered: the first porous medium consists of relatively wide pores of
the first order — fissures and blocks; the relative volume of the pores
of the first order, the porosity of the first order, eguals s;. The
blocks in themselves are porous, consisting of grains which are separated
by fine pores of the second order; together they form the second porous
sediun., The porosity of this medium ~ the porosity of the second order -
is designated by a,. It is pointed out that, gemerally speaking, », can-
tot be considered equal to the porosity of the blocks, since a, repre-
sents the ratic of the volume of the second-order pores to the total
volume of the elements of the rock in which a known space is occupied by
the fissures « pores of the first order. In the case where the upper
strata exert a constant pressure on the roof of the stratum, both poro-
sities, a;, and a,, will depend on the pressures of the liquid in the
pores of the first and second order, p) snd p,, 80 that

dmy = B.,dp1 — B dpa dmy =B dpy—B dp; (3.1
viere 8. B, B,. B,, sre positive constant coefficients.

The equations for conservation of mass of the liquid for both media
are of the fora (2.1) and (2.4), respectively. Assuming that the flow of
the liquid in the first medium (and thus also in the second medium) is
ibertialess, tbhe Darcy law for both media can be written as

k k
Vi=— T: gl‘ﬂd P V= — ‘T:'gl'ﬂd P (3.2)

where &1 is the porosity of the system of pores of the first order and
b2 the porosity of the system of pores of the second order.

By inserting into Equations (2.1) amd (2.4) relations (3.2), Expres-
sion (1.3) for the liquid flow from one medium to the other (whiech will
obviously remain valid even in this more general case), relation (2.2)
for the density of the liquid and relation (3.1) for the (differentials
of the porosity), and discarding small quantities of higher order for
the pressures of the liquid in both medis p; and p,, the following
system of equations is obtained:

f!
|
2 apm Bt B 2 ~8 R4S (a— p)

apr. a
Bpi = By + miB) 5y — B, 37— (P — )
3.3)
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1204 G.I., Barenblatt, Tu.P. Zheltov and I.N. Kochina

where =; and =, are the values of the first and second order porosity ;.
standard pressure.

If the pressure p, changes, say decreases, at & constant pressure of
the upper strata on the roof, the porosity of the first order will in-
crease, on the one hand, ss a result of the compression of the blocks
_and, on the other hand, it will decrease as a result of compression by
the overlying strata. These effects will apparently compensate each other
to some extent. The situation is similar for the secopnd-order porosity
s, in the case of a change in the pressure p;. It is, therefore, advis-
able to consider the wodel of the double porosity of the medium for whicn
the porosity of each order depends only on the appropriate pressure, so
that the coefficient 8 and B,, in Equation (3.1) can be considered s:al:
and the appropriate terms iz Equation (3.1) can be disregarded.

Equations (3.3) for such a podel of a porous medium with double poro-
8ity will be of the forz similar to the equations for heat transfer iz ;
heterogeneous mediuam considered by Rubinshtein f12 1:

&y X épp  a .
R8P =By T+ mad) Gr — 1 (Pe—Pi)

k: d 153 a
I Apr= (B, + '"203)',]2" -+ ey (p.—pP))

Disregarding in Equations (3.3) the terms representing a change in
the mass of the liquid due to the compressibility of the first medium
and the compression of the liquid in the pores of the first order, and
the changes in the mass of the liquid as s result of the seepage inflow
along the pores of the second order, we again obtain the equations of
motion of a 1liquid in a fissured porous medium (2.3) and (2.7).

4. Basic boundary-value problems of the theory of non-
steady-state seepage in fissured rocks. Equation (2.8), to which
corresponds the pressure distribution of the liquid in the pores p, can
be written as )

[k d
Bo%"? —div [;‘ grad p; + 03, z; grad Px] =0 (4.1,

where 8, is the total effect of compressibility equalling 8 _, , my8.
This form of writing the basic equation indicates that motion in the
system of fissures can be considered as the motion of a liquid in a
porous medium with a total compressibility coefficient 8;, and the ex-
pression for the velocity of seepage of the liquid can be written as

k. ' 9 , R
V= —lgrad p, — n3, z; grad p, @

g

P
0
o’

2 s
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Seepage of homogeneous liguids in fissured rocks ‘ 1295

The initial and the boundary conditions have to bc added to Lquation
(2.8). As in the theory of seepage in a borous medium, the steady-state
;initial conditions are of greatest interest in the given case (i.e. the
harmonic initial distributions p;, which satisfy Equation (4.1)}. Among
the possible types of boundary conditions the most important are the
following:

1) The pressures p, at the boundary of the rock of volume s under con-
sideration are given (first boundary-value problem):

Puls=/(5.1) (4.3)

2) At the boundary s the flow of the liquid is given (second boundary-
value problem), the following quantity being given, in accordance with
what was stated above, at the boundary of'the surface S:

{I: 2+ 30 30 (apl)} [s =/(S5,¢) (4.4)

(3/0n is the derivative along the normal to the surface S}, and, finally,

3) At the boundary a linear combination of the pressure and the flow
of the liquid, generally speaking with variable coefficients A and B, 1s
given (mixed problem):

{4n+ B[22+ gz G} =10 (4.5)

If the initial pressure-distribution is continuous and the boundary
conditions are consistent with the initial ones (i.e. the boundary values
of the initial distribution on approaching the boundary points equal to
the boundary values of the corresponding functions at the initial instant
of time), the solutions of the above-stated boundary-value problems will
be the ordinary classical solutions (4.1). However, if the initial pres-
sure distribution is discontinuous or if the initial and the boundary
conditions are unrelated, then the derived distributions will also be
discontinuous and there is no classical solution for the boundary-value
problems formulated above; it is necessary to seek a generalized solution
in the sense of Sobolev [13 ]. To proceed further it is necessary to de-
rive the conditions at the discontinuities. It is sufficient to consider
the one-dimensional case, since in the neighborhood of the given point
the surface of discontinuity can be considered ss being plane. Thus, it
is assumed that within a sufficiently small vicinity on both sides of the
isolated discontinuity surface x = 0 (x is the direction of the nommal to
the surface of the discontinuity), the function p; is continuous, has
appropriate continuous derivatives and satisfies the equation
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&ps _kdp _ g oA

apl
Bu — N3 57557 azio1 p rrl 4.6,

In the region G(- h<x<h, 0<t< T), where h is a small number,
the terms in the expression Lp, are piece-wise continuous. By means of
term-by-term integration of Lp, along the region G we obtain

; -
4.n
X -l

\ Lpidzdr =3, 'S'{m:, T)—p,(z.O)}dz—i{nsof,;’;, +22H e
G —h

0 [EE_T A

For A+ 0 the first integral tends to zero and the preceding equality

yields
. . T
- i ky 8
S[ﬂﬁoaz";, pa =0 (4.8,
[}

where as usual the sign [ ] designates the difference between the values
of the function on both sides of the discontinuity surface. Since T is
arbitrary and the expression under the integral sign is a continuous
function of time, it foliows that ‘the expression under the integral sign
equals zero:

O AR e

i.e. the condition of continuity at the surface of discontinuity of the

total flow of the liquid (9/0x was replaced by d/9n). To obtain the

second condition, Equation (4.6) is mulupl:ed by x and integration is
: carried out over the same region G:

S zLp, dz d‘ =Bo §{P1 (z, i)""Px (z, 0)} zdz —
G A

T h

o lmedpepegy]

Iz
dt=0

by

S{nBo +2p)

—h

As h « 0, the first and s'econd integrals will become zero, and thus

- .
od *ree
-~

e A

. we obtain

' ’ § ["lao op -—-p;:ldt =0 (410
. ; .
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Seepage of homogeneous liquids in fiseured rocks 1297

so that the second condition at the surface of discontinuity is obtained
in the form

(3 52+ 3 pu ] = md, 222 "‘IJ- (4.11)

For n = O the basic conditions at the surface of discontinuity (4.9) and
(4.11) will change into the condition of continuity of the function and
its derivative along the normal to any surface, i.e. the condition of
sbsence of discontinuities®, which is well known in the theory of heat
conduction and the theory of seepage in a porous medium.

Integrating (4.9) and (4. 11) we obtain the conditions at the discon-
tinuities in the form

(P11 = [P1lteo €', [gff‘] tg,’:‘] e xth- (4.12)

so that the pressure jumps and normal derivative of pressure which occur,
due to the discontinuity or due to inconsistent initial conditions, will
not be eliminated instantaneously as in a porous medium (and as is the
case for jumps in temperature and heat flow in the theory of heat con-
duction) but will decrease in accordance with the law e=X¢/7 This pro-
perty is a characteristic qualitative feature of the mathematical de-
scription of non-steady-state flow in fissured rocks, which is comparable
with flow through a porous medium.

5. Some specific problems of non-steady-state flow in
fissured rocks. General qualitative conclusions. 1. Non-steady-
state flow of liquid in a gallery. From the literature the importance of
the study of non-steady-state seepage in drainage galleries is well known.
This problem is formulated as follows: at the initial instant the pressure
of the liquid in a semi-infinite stratum (0 < z < ») P, is constant; the
pressure at the boundary z = 0 suddenly assumes the value P, differing
from P, and then remains constant. The problem of determining seepage
flow requires the solution of the equdtion

®* In odbtaining the second law of conaservation in & medium with e vari-
able permeability cosfficient &; it is necessary to multiply both
parts of Equation (4.6) by ’

(e

Pes
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ép p1 dpy -
B N azer = * o (0.1)

for the uncoordinated initial} and boundary conditions

§ 43 (=, 0) = Po’ n{— 0,1 = Py (52)

" (the boundary pressure is given immediately to the left of the boundary
x = 0). At the initial instant there will be a pressure jump at the

. boundary equal te (Py - P,;}; according to (4.12), at time t this jump

" will equal (Pl3 - Pl)e"“ , 80 that the pressure of the liquid immediate-

ly to the right of the boundary will equal

Pr(+0,8) = P, 4 (Py — P,) e=xtm (5.3)

To find the pressure distribution at any desired instant of time t,
the Laplace transform with respect to time t is applied. We set
a .

Pi(z,t) == Py — (Po— Py u(z, ) C(5.4)

Then, for determining u{x, ¢t) (t> 0, 0 x < »), we obtain the bound-
ary-value problea . .

du Pu 0w

-a—‘-—nm—us;,, u(+0,t)=1—e““/”, U(Z,0)=O (5.9)

Let
Uz, A) = S eMu (z, t) dt

i 4]
Applying the Laplace transform to Equation (5.5) we obtain

d*U A _ - 1 = 5
TF‘-T-F'EU"O' ve, M"A(n+m)’ Ulees ) =0 (0

1 _ 3
U= o 2 (Vi 7)

‘whence, on the basis of the known rule of inversion [14 ], we obtain

Y¥+ico —_— .
1 x di .
BE@ 0= 55 S e"exP(—‘/x-i-qu)k(x-i-kn) (5.7

y-—tco

The evolution of the integral on the right-hand side of the previous-
equation yields

Inser
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1 U
ds
91i — 20 S e~ sin (1/1 _G.s :) T} (5.8)

)

Inserting this expression into Equation (5.7) and substituting the

(-2) variables ¢/(1 = @) = v3, we obtain

?i_.ndary e : 2

e u(z,t):i—;z—s‘%sinvxexp (—r:—_%t,—n)dV=l-—exp(—$)__

Sump ’ o :

vediate- 201 . B ok

5 - ,-‘-S 7 sinvz {exp (— iF vzn> exp (— ;‘)} dv (5.9)
0

*

& (5.3)

. From this and from Equation (5.4) we finally obtain

’-ﬁ.é i 2(Py— P )msinvz 7 vixt | ®nt

:' iz, ) =P+ .__“_;_:__LS v {exp (— v )—exp(— '-]-)} dv + (5.10)

t (5‘4) ’ y xt

| +(Py— Py exp(— )

& bound- :

3 : Since the integral in Equation (5.10) and the integral obtained after

- ;  differentiation with respect to x under the integral sign are both uni-

q (5.5) ¢ formly convergent, the expression given by Equation (5.10) can be differ-

bR ¢ entiated with respect to x. Hence, from Equation (5.10) we obtain the

3 i expression for the flow of the liquid through the boundary of the stratum

s, z=0

‘ ky (8 2 (Po— Pr)iy { w

X . = (% = e TN — ™ N

- 3 7= m (az xmt0 . AR § {exp( 1+ qv')

< exn (W gy = — 2(Po=Pi ks %t

c(5.6) exp (=)} xp ¥V exp (~ )

Py o0

$ ) H - %! —

¢ ; x}{exp(—-——n q +c=)) 1} d (5.11)

::' j It is interesting to compare the derived solutions with the appropri-

¥in ate solution of the problem of the theory of seepage in a porous medium.

pa This well-known self-similar solution is obtained from Equation (5.10)

" 5.7) for the case when p = 0 .

! s

S ’ i 2 ) ) 1

*. { : @t = P'1+ ;(Po—Px) S rBdB=P1+(Po—P1)O(‘2"§>

:svi‘h-d 1 R ° z . Tt 5 2

= = A

7 i (t=v=) (542

] l

3 !

3 i

3 (
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- where ® is the symbol of the Kramp function. For comparing the pressures,

Equations (5.10) and (5.12) which correspond to fissured and ordinary
porous media, reapectxvely, the distribution quantities u(x, t) = (p; ~
P,)/(Py - P,) for various values of the parameter xt/n have been plottcd
as a function of the self-similar variable ¢ in
: Fig. 2. (The calculations were carried out by A,
f; : L. Dyshko at the Computing Center of the Academy
of Sciences, USSR). It can be seen that with
increasing xt/n the pressure distribution in a

a

orous medium tion which is obtained in an ardinary porous me

l ]
~Hhen . medium.

2. Non-steady-state
tnfiltration of a liquid
from a well discharging
at a constant rate. In
addition to the problem
considered previously, the
’ problem of non-steady-

, state infiltration of a
liquid from a well of in-

PR 20 w @ 13 finitely small radius
with a constant yield is
Fig. 2. of considerable interest.

It is formulated as follows: an infinite horizontal stratum of constant
thickness h is penetrated by a vertical well of negligibly small radius.
At the initial instant, the pressure of the liquid in the stratum is con-

. stant and equal to P. Then, a liquid begins to flow in or out at s con-

stant volume rate Q.

The pressure of the liquid in the fissures p;{r, t) (r is the distance
from the axis of the well) satisfies the equation

ap\ a1 6p. — 10 ap; -
o NavE e T *YeE T (@13

with the initial conditions
' pi(r,0)=P (5.44)

-In accordance with Equation (4.4) the boundary conditions can be ex-
pressed as

' " | Q=—2m’z{t’( )+‘13oaz( am)}r-o

We obtain therefrom

-

fissured rock tends to the self-similar distribu-
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Qe__ (, 9 _nﬁ_( dpy
Inkh dr>r-—-,-o +x a\’” )r--j—o

Integrating the last relation and applying the condition

(rop,/or)rmio=0 fort=0

we obtain the final formula for the boundary conditions

ap = e—xt/n - g

Setti (r#)r--i—o anlh (1 —eim) (5.15)
ing

pin)=2P+ 23;:,‘ u(r,t) (5.16)

we obtain the following boundary-value problem for determining the func-
tion u(r, t):

du g1 @ du {1 90 _Ou

w "arTwE a = *Ta "
(5.17)

u(r,0) =0, (P38, ===y

To solve the boundary-value problem (5.17) we again revert to the
Laplace r.ransfom, the relations (5.17) being reduced to the following
form:

2l A=y, (r‘!ﬁ) (5.18)

%+ AN ar /re=o

n.'&

1
r

—_—
A(x + Av)

Taking into consideration, slso, the condition Ul(e ,A) = 0, we obtain

0N = et 5oV it wr) (5.19)

(K, is the symbol of the Macdonald function), and by the general rule of

mversxon [14 ] we obtain
y+io0

u
u(r,f) = oo S T °\1/u+x )dx (5.20)
Y-

In an entirely analogous manner, after calculating the integral and
reverting to the variable p;, we obtain the pressure distribution in the
form

- J St \), .-
C pu(r ) =P+ z:&“a& °£w)[1-—exp(—-i—v-_*—_—$,—n]dv G.21)

e - - e
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The known pelf-similar solution of the corresponding problem of the
theory of seepage in a porous medium is obtaincd from Equation (5.21)
for n = 0:

o

_ Qn Jo (vr) v _ T 2 .
p‘(f,i)—P-‘-mg—l;—(i—c ‘)dv—P-Q—:{kl—hL,(—m> (5,12)

It can be seen, in the same way as in the previous problem, that for
increasing values of xt/n, the solution (5.21) of the problem of secpage
in a fissured rock tends asymptotically to the solution (5.22) of the
problem of seepage in a porous medium.

It can also be seen from the examples investigated that the most
charactesistic property of the non-steady-state flow of liquids in
fissured rocks is the occurrence of some delay in the transient processes;
the characteristic time of this delay is

T=n/x (5.23) .

Thus, the following general conclusion can be advanced: in consider-
ing processes of non-steady-state infiltration in fissured rocks, the
ordinary equations of non-steady-state flow in a porous medium can be
applied only if the characteristic times of the process under consider-
ation are long compared to the delay times r. However, if the character-
istic times of the process are comparable to r, it is necessary to apply
the model and the basic equations presented in this paper. The estimates
which have been carried out have shown that fissuring must be taken into
consideration in many cases when investigating such processes as the re-
storation of pressure in shut-down wells and, generally, transient pro-
cesses during changes of the operating conditions of the well.

In conclusion, the authors thank A.P. Krylov for his attention to the
work and A.A. Abramov, M.G. Neigauz and A.L. Dyshko for their useful re-

marks and for carrying out the calculations. .
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